Reactions of 9-Substituted 9-Thia-10-azaphenanthrenes with Electrophiles

Hiroshi Shimizu, ${ }^{*, a}$ Michinori Ozawa, ${ }^{\boldsymbol{a}}$ Takayuki Matsuda, ${ }^{\text {a }}$ Koji Ikedo, ${ }^{\text {a }}$ Tadashi Kataoka, ${ }^{\text {a }}$ Mikio Hori, ${ }^{\text {a }}$ Kazuhiro Kobayashi ${ }^{\text {b }}$ and Yukio Tada ${ }^{\text {b }}$
${ }^{a}$ Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502, Japan
${ }^{\text {b }}$ Taiho Pharmaceutical Co. Ltd., Hanno Research Center, 216-1, Nakayashita, Yaoroshi, Hanno, Saitama 357, Japan

Abstract

Reactions of 9-substituted 9-thia-10-azaphenanthrenes with several electrophiles have been investigated. Reaction of 9-alkyl-9-thia-10-azaphenanthrenes with dimethyl acetylenedicarboxylate (DMAD) afforded dibenzothiazonine derivatives 4 and 5, dibenzothiazocine derivatives 6, 2-alkylsulfinyl-2'-vinylaminobiphenyls 7, and bis(biphenylylimino)ethane derivatives 8 . The product distribution was markedly influenced by the substituent on the sulfur atom. 9-Methyl 3a and 9isopropyl derivatives 3d afforded predominantly dibenzothiazonine derivatives 5a and 4d, respectively, while 9 -ethyl 3b, 9 -isopropyl 3c and 9 -cyclohexyl derivatives 3 e gave predominantly dibenzothiazocine derivatives 6 and alkylsulfinyl vinylaminobiphenyls 7. In contrast, the reactions of 9 -phenyl-3f or 9 -vinyl-9-thia-10-azaphenanthrene 3 g with DMAD afforded only the corresponding dibenzothiazocine derivative 6. Reactions of 9 -alkylthiaazaphenanthrenes 3a-c with methyl propiolate (MP) in benzene afforded dibenzothiazecine derivatives 12 as $1: 2$ adducts. Reactions of compounds 3a-c with diphenylcyclopropenone in ethanol yielded the ring-opened products 13, while the same reaction in benzene solvent afforded the 4 -quinolone derivatives 14 via intramolecular cyclization of a ketene intermediate, L.

In our earlier paper, we both reported the first synthesis of novel cyclic sulfilimines (azathiabenzenes), in which a sulfur-nitrogen bond forms part of a cyclic conjugated ring system containing six π-electrons, and demonstrated their ylidic properties on the basis of spectral and chemical evidence. ${ }^{1}$ Moody and coworkers have also independently both synthesized other azathiabenzene derivatives by an alternative method ${ }^{2}$ and reported their thermal and nucleophilic reactions. ${ }^{3}$ Recently, we reported the thermal behaviour of 9-thia-10-azaphenanthrenes having various substituents on the sulfur and described interesting rearrangements and ring transformations of the substituent. ${ }^{4}$

In continuing our study of the chemistry of 9 -substituted 9 -thia-10-azaphenanthrenes, we have investigated their ylidic nature as demonstrated by their reactions with several types of electrophiles, and found several novel ring transformations of the azathiaphenanthrene skeleton.

In this paper, we describe the full details of our new findings on the reactivities of 9 -substituted 9-thia-10-azaphenanthrenes with electrophiles such as dimethyl acetylenedicarboxylate, methyl propiolate and diphenylcyclopropenone.

Results and Discussion

Synthesis of 9-(β-Phenylstyryl)-9-thia-10-azaphenanthrene 3g.-The 9 -substituted 9-thia-10-azaphenanthrenes used in the present studies are the 9 -alkyl derivatives $3 \mathbf{a}-\mathbf{e}$, the 9 -phenyl derivative 3 , whose synthesis was reported in our recent paper, ${ }^{4 c}$ and the 9 -vinyl derivative 3 g . The last-mentioned compound was freshly prepared for the present studies by the method shown in Scheme 1. Treatment of 2-amino-2'trimethylsilylmethylsulfanylbiphenyl 1 with BuLi in the presence of $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA), followed by addition of benzophenone, gave 2-amino-2'vinylsulfanylbiphenyl 2 . The biphenyl 2 was cyclized by treatment with tert-butyl hypochlorite $\left(\mathrm{Bu}^{t} \mathrm{OCl}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, and the product treated with aq. NaOH to afford 9 - $(\beta-$ phenylstyryl)-9-thia-10-azaphenanthrene 3 g as orange prisms.

Scheme 1 Reagents and conditions: i, BuLi, TMEDA, THF; ii, $\mathrm{Ph}_{2} \mathrm{CO}$; iii, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; iv, aq. $\mathrm{NaOH}, 0^{\circ} \mathrm{C}$

Reactions of 9-Substituted 9-Thia-10-azaphenanthrenes 3a-g with Dimethyl Acetylenedicarboxylate (DMAD).-Treatment of 9-substituted 9-thia-10-azaphenanthrenes 3a-g with DMAD in dry benzene at room temperature afforded the dibenzothiazonine derivatives 4 and 5, the dibenzothiazocine derivatives 6 , the 2-alkylsulfinyl-2'-vinylaminobiphenyls 7, and the bis(biphenylylimino)ethane derivatives 8. Interestingly, the product distribution was markedly influenced by the substituent on the sulfur atom (see Scheme 2 and Table 1). The 9-methyl 3a and 9isopropyl 3d derivatives afforded predominantly dibenzothiazonine skeleton products 4 and 5, while the 9 -ethyl 3b, 9-propyl 3c and 9 -cyclohexyl $3 e$ derivatives gave this skeleton only as a minor product. In the case of $\mathbf{3 b}$, the pure dibenzothiazocine $\mathbf{6 b}$ was gradually hydrolysed on the silica gel TLC plate to give the sulfoxide 7b. Therefore, it is suggested that the other sulfoxides

Table 1 Reactions of 9-R-substituted 9-thia-10-azaphenanthrenes 3 with dimethyl acetylenedicarboxylate (DMAD)

Compound	R	Yield of product (\%)				
		4	5	6	7	8
3a	Me	-	$40.5\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right)$	16	15	9.5
3b	Et	-	$-{ }^{16}$	27	26	2.4
3c	Pr	-	$16\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Et}\right)$	37	27	2
3d	$\mathrm{Pr}^{\mathbf{i}}$	$42\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right)$	-	-	9.1	-
		$35.6\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right)^{a}$	-	-	11.2^{a}	-
3e	$\mathrm{C}_{6} \mathrm{H}_{11}$	$17\left[\mathrm{R}^{1}=\mathrm{R}^{2}=-\left(\mathrm{CH}_{2}\right)_{5}-\right]$	-	$\overline{7}$	62	-
3 f	Ph	$-$	-	73	-	-
		-	-	$83.4{ }^{\text {a }}$	-	-
3g	$\mathrm{CH}=\mathrm{CPh}_{2}$	-	-	77	-	-

${ }^{a}$ Yield of the corresponding diethyl esters obtained from the reaction with diethyl acetylenedicarboxylate (DEAD).

3 a $R=M e$
b $R=E t$
c $R=P r$
d $\mathrm{R}=\mathrm{Pr}$

- $R=C_{6} C_{11}$
f $\mathrm{R}=\mathrm{Ph}$ g $\mathrm{R}=\mathrm{CH}=\mathrm{CPh}_{2}$
1

6

8
Scheme 2 Reagents: i, DMAD, benzene

7a, ce are also formed from the corresponding dibenzothiazocines $\mathbf{6 a}, \mathbf{c}-\mathbf{e}$, during separation of the reaction mixtures on TLC. It is noteworthy that the formation of dibenzothiazonines here contrasts with the absence of such products in the reaction
of the bicyclic azathiabenzene, azathianaphthalene, with DMAD, with the formation of only benzothiazocines as stable compounds in our previous work ${ }^{1 b}$ and featured in the report of Moody's group. ${ }^{3}$ Failure to isolate dibenzothiazocines from 9 -isopropyl 3d and 9 -cyclohexyl derivatives 3 e is probably because of their instability, resulting in the formation of the corresponding sulfoxides 7d and 7e, respectively, by hydrolysis during preparative TLC (PLC) purification. The dibenzothiazocine derivatives $\mathbf{6 f}$ and $\mathbf{6 g}$, obtained from 9 -phenyl 3 and 9 (β-phenylstyryl) derivatives 3 g are very stable and underwent no hydrolysis to the corresponding sulfoxides. The reaction of the thiaazaphenanthrenes with diethyl acetylenedicarboxylate (DEAD) as electrophile showed similar results, as shown in the case of thiaazaphenanthrene $\mathbf{3 d}$ or $\mathbf{3 f}$ in Table 1.

Structures of the Products.-The structures of the above compounds were determined on the basis of their spectroscopic data (see Experimental section), with that of compound $6 f$ being confirmed by X-ray analysis. The latter was carried out in order to try and explain the unusual upfield shifts of the benzene ring protons in its ${ }^{1} \mathrm{H}$ NMR spectrum relative to those of the analogous compounds $\mathbf{6 a - c}, \mathbf{g}$. The molecular structure of compound $\mathbf{6 f}$ is illustrated in Fig. 1. The phenyl ring on the sulfur atom is located very close to and parallel with the plane of one of the benzene rings of the dibenzothiazocine skeleton. This causes the unusual upfield shifts of the protons of benzene ring of dibenzothiazocine skeleton by the shielding effect of the phenyl group.

Mechanism of the Reaction.-We propose the mechanism shown in Scheme 3 for the ring transformation of 9 -substituted 9 -thia-10-azaphenanthrenes in their reaction with DMAD. Nucleophilic attack of 3 on the electron-deficient acetylene (DMAD) forms the zwitterionic intermediate A , which leads to the sulfonium ylide intermediate \mathbf{B} by an intramolecular proton abstraction from the proximate S -alkyl group. Intramolecular attack of the carbanion of the ylide intermediate \mathbf{B} on the double bond accompanied by cleavage of the $\mathrm{N}-\mathrm{S}$ bond gives the products 4 d , e. The products $5 \mathrm{a}-\mathrm{c}$ are formed by a $1,3-$ hydrogen shift in the corresponding ring-opened precursors $4 \mathrm{a}-\mathrm{c}$. On the other hand, the intermediate \mathbf{A} gives rise to the thiazate intermediate \mathbf{C}, which collapses to the product 6 by heterolytic cleavage of the $\mathrm{N}-\mathrm{S}$ bond. The unstable ylides 6 are easily hydrolysed during purification to give the ring-opened sulfoxides $\mathbf{7}$ via the intermediates \mathbf{D} and \mathbf{E} as shown in Scheme 3. The carbanion of the intermediate \mathbf{A} is protonated by water present in the reaction medium to give the aminosulfonium ion intermediate \mathbf{F} which is next attacked by a second molecule of 3 to afford the product $\mathbf{8}$ via intermediate \mathbf{G} after the loss of a proton.

Fig. 1 X-Ray molecular structure of 6,7-bis(methoxycarbonyl)-5-phenyl-6H-dibenzo $[e, g][1,4]$ thiazocin-5-ium-6-ide 6 f

3

\perp

B

5
6

D

Scheme 3

In order to obtain more exact information concerning the mechanism, especially for the formation of the dibenzothiazonine skeleton 4 or 5 , we carried out the generation of the
exocyclic intermediate \mathbf{B} corresponding to that derived from 3a. 6-[1,2-Bis(methoxycarbonyl)vinyl]-5-methyl-6 H -dibenzo[c, e]-[1,2]thiazin-5-ium perchlorate 11, a precursor of the inter-

Scheme 4 Reagents and conditions: i, DMAD, EtOH; ii, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O} ;$ iv, $70 \% \mathrm{HClO}_{4} ; \mathrm{v}, \mathrm{NaH}, \mathrm{THF}$
mediate B, was prepared as shown in Scheme 4. Michael addition of the 2 -amino- 2^{\prime}-methylsulfanylbiphenyl $9^{4 c}$ to DMAD afforded adduct 10 in 70% yield. Adduct 10 was oxidized with m-chloroperbenzoic acid (MCPBA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the sulfoxide 7a in 87% yield. Treatment of sulfoxide 7 a with trifluoroacetic anhydride, followed by addition of 70% perchloric acid gave the thiazinium perchlorate $11(71 \%)$, which was then treated with NaH in tetrahydrofuran (THF) at room temperature to generate the methylide intermediate \mathbf{B}. This intermediate then spontaneously underwent intramolecular cyclization to afford the expected ring-expansion product 5 5 (65%) via a 1,3-hydrogen shift.

We next carried out the reaction of thiaazaphenanthrenes 3a-c with methyl propiolate (MP). Treatment of the 9-methyl derivative 3a with MP in benzene at room temperature for 160 h yielded no $1: 1$ adduct, but the ring-expanded product 12a, a 1:2-adduct of the ylide and MP, was formed in 14% yield as orange prisms (see Scheme 5). Similarly, the 9-ethyl 3b and the 9 -propyl derivatives 3 c also afforded the $1: 2$ adducts $\mathbf{1 2 b}$ and 12c as orange prisms in 5 and 10% yields, respectively. Their structures were determined on the basis of spectral results, final confirmation being achieved by an X-ray crystal structure determination of 12a, the details of which have already been published. ${ }^{5}$ The formation of compound 12 can be rationalized by the mechanism depicted in Scheme 5. Nucleophilic attack of the nitrogen anion of thiaazaphenanthrene 3 on methyl propiolate (MP) forms the zwitterionic intermediate \mathbf{H}, whose carbanion attacks a further MP molecule to afford the second zwitterionic intermediate \mathbf{I}. The intermediate \mathbf{I} then cyclizes to give the final product 12 via the thiazine intermediate \mathbf{J}, with fission of the $\mathrm{S}-\mathrm{N}$ bond.
We also examined the reaction of the thiaazaphenanthrenes

J

I

12a-c

Scheme 5 Reagents and conditions: i, MP, benzene, room temp.
with an active olefinic electrophile (see Scheme 6). Treatment of 3a with diphenylcyclopropenone in ethanol at room temperature afforded the ring-opened ethyl ester 13a (16\%). Similar ring-opening reactions were also observed in the case of the 9 -ethyl $\mathbf{3 b}$ and the 9 -propyl derivatives 3 c to afford the corresponding adducts 13b (20%) and 13 c (34%). The stilbene group in adducts 13a-c is assumed to be in a Z-configuration based on the IR absorption of the NH group at $3160 \mathrm{~cm}^{-1}$, shifted to lower wavenumber as a result of hydrogen bonding with the ester carbonyl oxygen. In contrast, the same reactions performed in benzene as an aprotic solvent gave 4-quinolone derivatives 14, the structures of which were elucidated on the basis of spectral results (see Experimental section). These were also confirmed by an alternative synthesis; Reynolds et al. have reported an elegant synthesis of 2-methyl-4-quinolone from ethyl β-anilino-(Z)-but-2-enoate on heating in Dowtherm (diphenyl ether-biphenyl, 3:1). ${ }^{6}$ We applied this thermal cyclization method to the preparation of 14 from the ethyl ester 13 obtained above. The ester 13 was heated in Dowtherm at $250^{\circ} \mathrm{C}$ for 1 h , to afford the expected quinolone derivatives 14 in moderate yields in all cases. Thus, the structures of derivatives 14 were completely confirmed. We propose a mechanism for the formation of compounds 13 or 14 as follows. Nucleophilic attack by the nitrogen anion of thiaazaphenanthrene 3 on cyclopropenone forms the zwitterionic intermediate \mathbf{K}, which collapses to the ketene intermediate \mathbf{L} with fission of the S-N bond. In ethanolic reaction media, the intermediate L is attacked by ethanol to give the compounds 13, while in benzene, the ketene intermediate \mathbf{L} cyclizes at the ortho-position by electrophilic substitution at the benzene ring to give the intermediate \mathbf{M} which undergoes a 1,3-hydrogen shift to produce compounds 14.

L

13
methylsulfanylbiphenyl ${ }^{4 c} 1(1 \mathrm{~g}, 3.48 \mathrm{mmol})$ in dry tetrahydrofuran (THF; $6 \mathrm{~cm}^{3}$), and the mixture was stirred for 2 h . A solution of benzophenone ($760 \mathrm{mg}, 4.18 \mathrm{mmol}$) in dry THF (4 cm^{3}) was added to the mixture, which was stirred for a further 3 h before being poured into ice-water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residual oil was subjected to column chromatography on silica gel with hexane-ethyl acetate (5:1) as solvent to afford 2 -amino-2'-(β-phenylstyrylsulfanyl)biphenyl 2 $(1.29 \mathrm{~g}, 97.2 \%)$ as a yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1} 3450$ and $3350\left(\mathrm{NH}_{2}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.75-3.75\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 6.70(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}=)$ and 6.73-7.70 (18 H, m, ArH); m/z 379 (M^{+}, base) (Found: M ${ }^{+}$, 379.1368. $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NS}$ requires $M, 379.1394$). The biphenyl $2(1 \mathrm{~g}$, 2.63 mmol) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ and the solution was cooled to $-78^{\circ} \mathrm{C}$ and stirred while a solution of $\mathrm{Bu}^{t} \mathrm{OCl}(320 \mathrm{mg}, 2.94 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added dropwise to it during 30 min . The mixture was stirred for a further 16 h during which time the temperature was gradually raised to $0^{\circ} \mathrm{C}$. Aq. $\mathrm{NaOH}(117 \mathrm{mg}, 2.92 \mathrm{mmol})$ in water $\left(2 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture which was then vigorously stirred for 1 h . The organic layer was separated, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil, which was separated by PLC on silica gel with hexane-ethyl acetate ($2: 1$) to give title compound 3 g (850 mg , 84.7%) as orange prisms, after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane, m.p. $150-152^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1600,1230$ and 925 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.75-7.75(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $=\mathrm{CH}-)$ and $7.80-$ $8.08(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 377\left(\mathrm{M}^{+}\right)$and 198 (base) (Found: C, 82.7; $\mathrm{H}, 5.0 ; \mathrm{N}, 3.3 . \mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NS}$ requires $\mathrm{C}, 82.7 ; \mathrm{H}, 5.1 ; \mathrm{N}, 3.7 \%$) (Found: $\mathrm{M}^{+}, 377.1218 . \mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NS}$ requires $M, 377.1237$).

Reactions of 9-Thia-10-azaphenanthrenes $\mathbf{3}$ with Dimethyl Acetylenedicarboxylate (DMAD)

9-Methyl-9-thia-10-azaphenanthrene 3a.-A solution of DMAD ($302 \mathrm{mg}, 2.13 \mathrm{mmol}$) in dry benzene ($10 \mathrm{~cm}^{3}$) was added to a stirred solution of the thiaazaphenanthrene $3 a^{4 c}(412 \mathrm{mg}$, 1.93 mmol) in dry benzene ($20 \mathrm{~cm}^{3}$) under nitrogen, and the mixture was stirred for 20 h at room temperature. It was then evaporated under reduced pressure at room temperature to give an oil which was separated by PLC on silica gel with hexaneethyl acetate (3:1) into three fractions. The upper fraction afforded dimethyl 1,2-bis(2^{\prime}-methylsulfanylbiphenyl-2-ylim-ino)ethane-1,2-dicarboxylate 8 a ($52 \mathrm{mg}, 9.5 \%$) as yellow needles. The middle fraction gave 7,8 -bis(methoxycarbonyl)$6 H, 9 H$-dibenzo $[f, h][1,5]$ thiazonine 5 a ($278 \mathrm{mg}, 40.5 \%$) as colourless needles. These two products were isolated in our preliminary report. ${ }^{1 b}$ The fraction from the origin of the PLC plate was still a mixture, and was further separated by PLC on silica gel with hexane-ethyl acetate (1:2) to afford 5-methyl-6,7-bis(methoxycarbonyl)-6 H -dibenzo $[e, g][1,4]$ thiazocin-5-ium-6ide $6 \mathrm{a}(109 \mathrm{mg}, 16 \%$) and 2-[(E)-1,2-bis(methoxycarbonyl)vin-ylamino]-2'-methylsulfinylbiphenyl 7a ($109 \mathrm{mg}, 15 \%$). Compound 6a, dark yellow prisms, m.p. $164-165^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and 1650 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.97$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $6.97-$ $7.77(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 33.1(\mathrm{q}), 51.0(\mathrm{q}), 52.6(\mathrm{q})$, 121.1 (d), 123.5 (d), 126.1 (s), 129.2 (s), 129.2 (d), 129.6 (d), 130.9 (d), 131.6 (d), 132.2 (d), 133.9 (d), 143.6 (s), 151.7 (s), 159.1 (s), 166.8 (s) and 167.3 (s); $m / z 355\left(\mathrm{M}^{+}\right)$and 255 (base) (Found: C, 64.1; $\mathrm{H}, 4.8 ; \mathrm{N}, 3.9 . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 64.2 ; \mathrm{H}, 4.8 ; \mathrm{N}$, 3.9%). Compound 7 a , yellow prisms, m.p. $135-136^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\max } / \mathrm{cm}^{-1} 3270$ (NH), 1730 (ester) and 1030 (SO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.51(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.47(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}=)$, $6.75-6.88(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.14-7.66(6 H, m, ArH), 8.15-8.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $9.29(1 \mathrm{H}$, br s, NH); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 41.7$ (q), 51.3 (q), 52.9 (q), 97.1 (d), 120.0 (d), 123.7 (d), 124.2 (d), 128.6 (s), 129.3 (d), 129.5 (d), 130.5 (d),
130.8 (d), 131.0 (d), 135.2 (s), 138.4 (s), 144.9 (s), 146.3 (s), 164.4 (s) and $169.2(\mathrm{~s}) ; m / z 373\left(\mathrm{M}^{+}\right)$and 250 (base) (Found: C, 61.0; $\mathrm{H}, 5.1 ; \mathrm{N}, 3.6 . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 61.1 ; \mathrm{H}, 5.1 ; \mathrm{N}, 3.75 \%$).

9-Ethyl-9-thia-10-azaphenanthrene 3b.-A mixture of DMAD $(275 \mathrm{mg}, 1.94 \mathrm{mmol})$ and thiaazaphenanthrene $3 \mathrm{~b}^{4 c}(400 \mathrm{mg}$, 1.76 mmol) in dry benzene ($30 \mathrm{~cm}^{3}$) was stirred at room temperature for 20 h under nitrogen, and worked up as above. The residual oil was submitted to PLC on silica gel with hexaneethyl acetate ($1: 1$) to afford the following products: dimethyl 1,2-bis(2'-ethylsulfanylbiphenyl-2-ylimino)ethane-1,2-dicarboxyl-
ate 8 b ($25 \mathrm{mg}, 2.4 \%$), yellow prisms, m.p. $155-156^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ (ester), $1640(\mathrm{C}=\mathrm{N})$ and $1270 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.15\left(6 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{CH}_{2} \mathrm{Me}\right), 2.69(4 \mathrm{H}, \mathrm{q}$, $\left.J 7,2 \times \mathrm{CH}_{2} \mathrm{Me}\right)$, $3.35(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me})$ and $6.92-7.41(16 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.1$ (q), 27.7 (t), 51.8 (q), 117.9 (d), 125.2 (d), 126.7 (d), 127.6 (d), 128.3 (d), 128.9 (d), 131.0 (d), 131.2 (d), 135.6 (d), 139.9 (s), 145.4 (s), 156.7 (s), 163.1 (s) and 194.1 (s); $m / z 596\left(\mathrm{M}^{+}\right)$and 238 (base) (Found: C, 68.2; H, 5.3; N, 4.7. $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\left.\mathrm{C}, 68.4 ; \mathrm{H}, 5.4 ; \mathrm{N}, 4.7 \%\right) ; 2-[(E)-1,2-$ bis(methoxycarbonyl)vinylamino]-2'-ethylsulfinylbiphenyl 7b $\left(179 \mathrm{mg}, 26 \%\right.$), yellow prisms, m.p. $118-120^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane); $v_{\max } / \mathrm{cm}^{-1} 1730$ and 1665 (ester) and 1030 (SO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.05\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 2.20-2.90(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.45(1 \mathrm{H}, \mathrm{s}$, $-\mathrm{CH}=$), $6.75-6.88$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.14-7.66$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.04 $8.12(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 5.8$ (q), 47.0 (t), 51.3 (q), 52.9 (q), 96.8 (d), 120.0 (d), 123.0 (d), 125.5 (d), 128.5 (s), 129.0 (d), 129.2 (d), 130.6 (d), 131.0 (d), 131.1 (d), 135.4 (s), 138.3 (s), 142.1 (s), 146.4 (s), 164.5 (s) and 169.2 (s); $m / z 387\left(\mathrm{M}^{+}\right)$and 198 (base) (Found: C, 61.9; H, 5.5; N, 3.6. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 62.0 ; \mathrm{H}, 5.5 ; \mathrm{N}, 3.6 \%$; 5-ethyl-6,7-bis(methoxycarbonyl)-6H-dibenzo $[e, g][1,4]$ thiazocin-5-ium-6ide 6 b ($178 \mathrm{mg}, 27 \%$), pale yellow prisms, m.p. $140-141^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and 1650 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.99-2.23(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{Me}$), $3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91-7.78(8 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 9.7(\mathrm{q}), 43.0(\mathrm{t}), 51.0(\mathrm{q}), 52.6(\mathrm{q}), 59.9(\mathrm{~s})$, 121.0 (d), 123.3 (d), 123.9 (s), 129.0 (s), 129.4 ($2 \times \mathrm{d}$), 130.7 (d), 131.4 (d) 133.4 (d) 133.9 (d), 143.9 (s), 151.4 (s), 159.0 (s) and $167.4(2 \times \mathrm{s}) ; m / z 369\left(\mathrm{M}^{+}\right)$and 255 (base) (Found: C, 64.8; H, 5.2; $\mathrm{N}, 3.8 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 65.02 ; \mathrm{H}, 5.2 ; \mathrm{N}, 3.8 \%$).

9-Propyl-9-thia-10-azaphenanthrene 3c.-A mixture of DMAD ($324 \mathrm{mg}, 2.28 \mathrm{mmol}$) and thiaazaphenanthrene $3 \mathrm{c}^{4 c}$ ($500 \mathrm{mg}, 2.07 \mathrm{mmol}$) in dry benzene ($35 \mathrm{~cm}^{3}$) was stirred for 20 h at room temperature under nitrogen and worked up as above. The residue was separated by PLC on silica gel with hexaneethyl acetate ($1: 1$) to give the following products: dimethyl 1,2bis(2^{\prime}-propylsulfanyl-2'-biphenyl-2-ylimino)ethane-1,2-dicarboxylate 8 c ($24 \mathrm{mg}, 2 \%$), yellow columns, m.p. $135-136^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ (ester), $1645(\mathrm{C}=\mathrm{N}$) and $1260 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.87\left(6 \mathrm{H}, \mathrm{t}, J 7.3,2 \times \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Me}\right), 1.49(4 \mathrm{H}, \mathrm{h}$, $\left.J 7.3,2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.63\left(4 \mathrm{H}, \mathrm{t}, J 7.3,2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $3.35(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$ and $6.93-7.44(16 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.4$ (q), 22.3 (t), 35.9 (t), 51.8 (q), 117.9 (d), 125.2 (d), 126.6 (s), 127.6 (d), 128.2 (d), 129.2 (d), 131.1 (d), 131.3 (d), $135.8(\mathrm{~s}), 140.0(\mathrm{~s}), 145.5(\mathrm{~s}), 156.7(\mathrm{~s})$ and $163.2(\mathrm{~s}) ; m / z 624\left(\mathrm{M}^{+}\right)$ and 252 (base) (Found: C, 69.0; H, 5.7; N, 4.6. $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 69.2 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.5 \%$; 6-ethyl-7,8-bis(methoxy-carbonyl)-6H,9H-dibenzo $[f, h][1,5]$ thiazonine $5 c(123 \mathrm{mg}$, 16%), a yellow oil; $v_{\max } / \mathrm{cm}^{-1} 3310(\mathrm{NH})$ and 1720 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.78\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.25-1.82(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{Me}$), 3.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.63 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.92 ($1 \mathrm{H}, \mathrm{t}, J$ $6, \mathrm{CH}), 6.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $6.98-7.49(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.8(\mathrm{q}), 13.0(\mathrm{t}), 46.3$ (d) 51.2 (q), 52.9 (1), 111.7 (s), 122.4 (d), 125.1 (d), 127.5 (d), 127.8 (d), 128.8 (d), 129.3 (d), 131.3 (d), 133.6 (s), 135.2 (d), 135.5 (s), 138.2 (s), 138.4 (s), 142.5 (s),
165.9 (s) and $167.2(\mathrm{~s}) ; m / z 383\left(\mathrm{M}^{+}\right)$and 184 (base) (Found: M^{+}, 383.1179. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M, 383.1192\right) ; 2-[(E)-1,2-$ bis(methoxycarbonyl)vinylamino]-2'-propylsulfinylbiphenyl 7c ($222 \mathrm{mg}, 27 \%$), a yellow oil; $v_{\max } / \mathrm{cm}^{-1} 1750$ and 1675 (ester) and $1030(\mathrm{SO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.79\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, 1.45-1.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.50-2.62(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.46(1 \mathrm{H}$, $\mathrm{s},=\mathrm{CH}-$), 6.62-6.88 (1 H, m, ArH), 7.10-7.68 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.06-8.13 (1 H, m, ArH) and $9.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 12.5 (q), 15.4 (t), 51.1 (q), 52.7 (q), 55.8 (t), 96.6 (d), 119.8 (d), 121.3 (d), 123.5 (d), 124.1 (d), 124.9 (d), 128.2 (s), 129.1 (d), 130.5 (d), 131.0 (d), 135.1 (s), 138.2 (s), 142.7 (s), 146.2 (s), 164.3 (s) and 169.1 (s); $m / z 401\left(\mathrm{M}^{+}\right)$and 181 (base) (Found: $\mathrm{M}^{+}, 401.1324$. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}$ requires M, 401.1297); 6,7-bis(methoxycarbon-yl)-5-propyl-6 H -dibenzo $[e, g][1,4]$ thiazocin-5-ium-6-ide \quad 6c ($293 \mathrm{mg}, 3.7 \%$), yellow prisms, m.p. $140-141.5^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\max } / \mathrm{cm}^{-1} 1745$ and 1650 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.75\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.00-1.65(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $1.75-2.25$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 3.65 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $6.85-7.90(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.4(\mathrm{q}), 18.4(\mathrm{t}), 50.3(\mathrm{t}), 51.0(\mathrm{q}), 52.6(\mathrm{q}), 59.5(\mathrm{~s})$, 121.0 (d), 123.2 (d), 124.2 (s), 129.1 (s), 129.4 (d), 129.5 (d), 130.7 (d), 131.4 (d), 133.1 (d), 133.8 (d), 143.8 (s), 151.5 (s), 159.0 (s), 167.3 (s) and $167.5(\mathrm{~s}) ; m / z 383\left(\mathrm{M}^{+}\right)$and 255 (base) (Found: C, 65.8; $\mathrm{H}, 5.55$; $\mathrm{N}, 3.4 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 65.8 ; \mathrm{H}, 5.5 ; \mathrm{N}$, 3.65%).

9-Isopropyl-9-thia-10-azaphenanthrene 3d.-A mixture of DMAD ($353 \mathrm{mg}, 2.48 \mathrm{mmol}$) and thiaazaphenanthrene $3 \mathrm{~d}^{4 c}$ ($500 \mathrm{mg}, 2.07 \mathrm{mmol}$) in dry benzene ($30 \mathrm{~cm}^{3}$) was stirred for 27 h at room temperature under nitrogen and worked up as above. The residual oil was separated by PLC on silica gel with hexaneethyl acetate $(2: 1)$ to give the following products: 7,8-bis-(methoxycarbonyl)-6,6-dimethyl-6,7-dihydrodibenzo $[f, h]$ thiazonine 4 d ($334 \mathrm{mg}, 42 \%$), yellow prisms, m.p. $143-145^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1760$ and 1735 (ester) and 1662 $(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.63$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.23(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $6.66-$ $7.70(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 24.5(\mathrm{q}), 28.0(\mathrm{q}), 47.5(\mathrm{~s}), 52.2$ (q), 53.1 (q), 57.5 (d), 114.8 (d), 124.3 (d), 127.9 (d), 128.3 (d), 128.3 (d), 128.8 (d), 130.1 (d), 131.2 (s), 132.1 (s), 139.3 (d), 146.0 (s), 147.0 (s), 156.6 (s), 164.1 (s) and $168.3(\mathrm{~s}) ; m / z 383\left(\mathrm{M}^{+}\right)$and 184 (base) (Found: C, $65.5 ; \mathrm{H}, 5.5 ; \mathrm{N}, 3.7 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 65.8; H, 5.5; N, 3.7\%); 2-[(E)-1,2-bis(methoxycarbonyl)vinyl-amino]-2'-isopropylsulfinylbiphenyl 7 d ($76 \mathrm{mg}, 9.1 \%$), pale yellow prisms, m.p. $119-120.5^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\max } / \mathrm{cm}^{-1} 1722$ and 1661 (ester) and $1020(\mathrm{SO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 0.88 ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}$), 1.12 ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}$), $2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.38(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}=), 6.60-$ 8.15 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $9.28(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; m / z 401\left(\mathrm{M}^{+}\right)$and 327 (base) (Found: C, 62.6; H, 5.65; N, 3.5. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}$ requires C, 62.8; H, 5.8; N, 3.5\%).

In a similar manner, diethyl acetylenedicarboxylate (DEAD), instead of DMAD, reacted with the compound 3d to give the corresponding ethyl esters: 7,8-bis(ethoxycarbonyl)-6,6-di-methyl-6,7-dihydrodibenzo $[f, h][1,5]$ thiazonine (35.6%), a yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1748$ and 1722 (ester) and $1662(\mathrm{C}=\mathrm{N})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.13\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.25(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{OCH}_{2} \mathrm{Me}$), $1.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.95-4.48(5 \mathrm{H}$, m, CH and $2 \times \mathrm{OCH}_{2} \mathrm{Me}$) and $7.20-7.70(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;$ $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.5(\mathrm{q}), 13.8$ (q), 24.4 (q), 27.8 (q), 47.2 (s), 57.7 (d), $60.9(\mathrm{t}), 61.8(\mathrm{t}), 114.7(\mathrm{~d}), 124.0(\mathrm{~d}), 127.6(\mathrm{~d}), 128.0(\mathrm{~d}), 128.1$ (d), 128.6 (d), 129.8 (d), 131.1 (s), 132.0 (s), 139.0 (d), 146.0 (s), 147.0 (s), 156.9 (s), 163.4 (s) and 167.5 (s); $m / z 411$ (M^{+}) and 184 (base) (Found: $\mathrm{M}^{+}, 411.1537 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires $M, 411.1504$); 2-[(E)-1,2-bis(ethoxycarbonyl)vinylamino]-2'-isopropylsulfinylbiphenyl (11.2%), yellow plates, m.p. $112-114^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.93\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$,
$1.18\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.11(6 \mathrm{H}, \mathrm{d}, J 7,2 \times \mathrm{Me}), 2.32$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.05\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.19(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 5.38(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}=), 6.65-8.15(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.25(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; m / z 429\left(\mathrm{M}^{+}\right)$and 198 (base) (Found: C, 63.9; $\mathrm{H}, 6.2 ; \mathrm{N}, 3.2 ; \mathrm{M}^{+}, 429.1584 . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 64.3 ; \mathrm{H}$, $6.3 ; \mathrm{N}, 3.3 \%$; $M, 429.1609$).

9-Cyclohexyl-9-thia-10-azaphenanthrene 3e.-A mixture of DMAD ($166 \mathrm{mg}, 1.17 \mathrm{mmol}$) and thiaazaphenanthrene $3 \mathrm{e}^{4 c}$ ($300 \mathrm{mg}, 1.07 \mathrm{mmol}$) in dry benzene ($25 \mathrm{~cm}^{3}$) was stirred for 52 h at room temperature under nitrogen and worked up as above. The residue was submitted to PLC on silica gel with hexaneethyl acetate ($3: 1$) to give the following products: spiro[cyclo-hexane-1,6'-(7,8-bis(methoxycarbonyl)-6,7-dihydrodibenzo-
$[f, h][1,5]$ thiazonine $)] 4 \mathrm{e}\left(79 \mathrm{mg}, 17 \%\right.$), a yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ 1775 and 1730 (ester) and $1663(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.21-2.67$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}$), $3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.24(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}), 6.78-6.81(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.15-7.58$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 21.8(\mathrm{t}), 22.1(\mathrm{t}), 25.2(\mathrm{t}), 28.9(\mathrm{t}), 32.9(\mathrm{t}), 52.2(\mathrm{q})$, $53.0(\mathrm{q}), 53.7$ (s), 58.8 (d), 114.7 (d), 124.3 (d), 128.0 (d), 128.1 (d), 128.2 (d), 128.7 (d), 129.8 (d), 131.4 (s), 132.2 (s), 137.7 (d), 146.6 (s), $146.9(\mathrm{~s}), 156.6(\mathrm{~s}), 164.4(\mathrm{~s})$ and $168.3(\mathrm{~s}) ; m / z 423\left(\mathrm{M}^{+}\right)$and 184 (base) (Found: M^{+}, 423.1484. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires M, 423.1504). 2-[(E)-1,2-bis(methoxycarbonyl)vinylamino]-2'cyclohexylsulfinylbiphenyl 7e ($294 \mathrm{mg}, 62 \%$), pale yellow prisms, m.p. $128-130^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1740 and 1662 (ester) and $1030(\mathrm{SO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.10-1.67$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 2.30-2.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 3.60$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.42(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}=), 6.76-7.64$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.97-8.05(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 21.9(\mathrm{t}), 25.0(\mathrm{t}), 25.1(\mathrm{t}), 25.4(\mathrm{t}), 27.2(\mathrm{t}), 51.1(\mathrm{q})$, 52.5 (q), 58.8 (d), 95.9 (d), 119.9 (d), 123.6 (d), 128.5 (s), 128.6 (d), 128.9 (d), 130.4 (d), 130.8 (d), 131.3 (d), 135.8 (s), 138.1 (s), 140.6 (s), 146.5 (s), 164.4 (s) and 169.1 (s); $m / z 441\left(\mathrm{M}^{+}\right)$and 327 (base) (Found: C, 65.5; H, 6.3; N, 3.3. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$ requires C, 65.3; H, 6.2; N, 3.2\%).

9-Phenyl-9-thia-10-azaphenanthrene 3f.-A mixture of DMAD ($310 \mathrm{mg}, 2.18 \mathrm{mmol}$) and thiaazaphenanthrene $3 \mathbf{3 f}^{\mathbf{4 c}}$ ($500 \mathrm{mg}, 1.82 \mathrm{mmol}$) in dry benzene ($40 \mathrm{~cm}^{3}$) was stirred for 42 h at room temperature under nitrogen and worked up as above. The oil obtained was purified by PLC on silica gel with hexaneethyl acetate- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1: 2)$ to afford 6,7- bis(methoxy-carbonyl)-5-phenyl-6 H -dibenzo $[e, g][1,4]$ thiazocin-5-ium-6ide $6 f\left(555 \mathrm{mg}, 73 \%\right.$), yellow columns, m.p. $236-238^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and 1655 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.25(1 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{ArH})$, 6.41 (1 H, t, J 6.3, ArH), 6.84 ($3 \mathrm{H}, \mathrm{d}, J 7.8$, ArH), 7.04-7.19 (4 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.43(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}), 7.59(1 \mathrm{H}, \mathrm{t}, J 6.3, \mathrm{ArH})$, $7.71(1 \mathrm{H}, \mathrm{t}, J 6.3, \mathrm{ArH})$ and $8.05(1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 51.0$ (q), 52.6 (q), 120.2 (q), 123.1 (d), 124.5 (d), 128.0 (s), 128.6 (d), 128.8 (d), 129.0 (d), 129.1 (d), 129.5 (d), 131.8 (d), 133.2 (d), 134.0 (d), 134.2 (s), 143.8 (s), 150.6 (s), 158.8 (s), 167.2 (s) and 167.3 (s); $m / z 417$ (M ${ }^{+}$, base) (Found: C, 68.9; $\mathrm{H}, 4.5 ; \mathrm{N}, 3.35 . \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 69.05 ; \mathrm{H}, 4.6 ; \mathrm{N}, 3.4 \%$).

In a similar manner, DEAD, reacted with the compound $3 f$ to afford the corresponding ethyl ester derivative, 6,7-bis(ethoxy-carbonyl)-5-phenyl-6H-dibenzo $[e, g][1,4]$ thiazocin-5-ium-6ide ($675 \mathrm{mg}, 83.4 \%$), yellow prisms, m.p. $218-220^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1738$ and 1660 (ester); $\delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 1.21\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.32\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$, $4.19\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{Me}\right), 6.15(1 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{ArH}), 6.41(1 \mathrm{H}$, $\mathrm{t}, J 6.3, \mathrm{ArH}), 6.84(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.02-7.17(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.40 (1 H, d, J7.1, ArH), $7.56(1 \mathrm{H}, \mathrm{t}, J 6.3, \mathrm{ArH}), 7.69(1 \mathrm{H}, \mathrm{t}, J$ 6.3, ArH) and $8.02(1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.9(\mathrm{q})$, 14.5 (q), 59.7 (t), 61.5 (t), 120.2 (d), 123.1 (d), 124.6 (d), 128.2 (s), 128.8 (d), 128.9 (d), 129.1 (d), 129.5 (d), 131.8 (d), 133.2 (d), 133.9 (d), 134.4 (s), 144.0 (s), 150.8 (s), 159.2 (s), 166.9 (s) and 167.2
(s); m/z 445 (M ${ }^{+}$, base) (Found: C, 70.2; H, 5.15; N, 3.1. $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 70.1 ; \mathrm{H}, 5.2 ; \mathrm{N}, 3.1 \%$).

9-(β-Phenylstyryl)-9-thia-10-azaphenanthrene $\mathbf{3 g}$.-A mixture of DMAD ($83 \mathrm{mg}, 0.58 \mathrm{mmol}$) and thiaazaphenanthrene 3 g $(200 \mathrm{mg}, 0.53 \mathrm{mmol})$ in dry benzene $\left(15 \mathrm{~cm}^{3}\right)$ was stirred for 5 h at room temperature under nitrogen, and worked up as above to afford 6,7-bis(methoxycarbonyl)-5-(β-phenylstyryl)-6 H -dibenzo $[e, g][1,4]$ thiazocin-5-ium-6-ide $6 \mathrm{~g}(212 \mathrm{mg}, 77.1 \%)$ as yellow prisms, m.p. $217-219^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1720$ and 1650 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.63(3 \mathrm{H}, \mathrm{s}$, OMe), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$) and 6.78-7.73 ($19 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $=\mathrm{CH}-$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 50.91$ (q), 52.6 (q), 121.5 (d), 121.9 (d), 123.7 (d), 127.6 (d), 128.2 (d), 128.5 (d), 128.9 (d), 129.0 (d), 129.1 (d), 129.9 (d), 130.4 (d), 130.5 (s), 130.6 (d), 131.1 (d), 131.4 (d), 133.2 (d), 135.7 (s), 137.1 (s), 143.1 (s), 151.3 (s), 152.4 (s), 159.5 (s), 167.0 (s) and 167.4 (s); $m / z 519$ (M^{+}) and 178 (base) (Found: $\mathrm{C}, 73.9 ; \mathrm{H}, 4.85 ; \mathrm{N}, 2.7 . \mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 73.97 ; \mathrm{H}, 4.85$; N, 2.70\%).

2-[(E)-1,2-Bis(methoxycarbonyl)vinylamino]-2'-methylsulfanylbiphenyl 10.-A solution of DMAD ($660 \mathrm{mg}, 4.64$ $\mathrm{mmol})$ in ethanol $\left(5 \mathrm{~cm}^{3}\right)$ was added slowly to a stirred solution of 2-amino-2'-methylsulfanylbiphenyl $9^{4 c}(1 \mathrm{~g}, 4.64 \mathrm{mmol})$ in ethanol $\left(30 \mathrm{~cm}^{3}\right)$, and the mixture was stirred for 40 h . Evaporation of the solvent afforded title compound $10(1.17 \mathrm{~g}$, 70.4%) as pale yellow prisms after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, m.p. $87.5-88^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and 1670 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.63$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.27(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}-), 6.75-7.44(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 9.15-9.45 (1 H, br s, NH); $m / z 357\left(\mathrm{M}^{+}\right)$(Found: C, 64.95; H, 5.4; N, 3.9. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 63.85 ; \mathrm{H}, 5.4 ; \mathrm{N}, 3.9 \%$).

2-[(E)-1,2-Bis(methoxycarbonyl)vinylamino]-2'-methylsulfin-ylbiphenyl7a.-To a solution of the biphenyl $10(1 \mathrm{~g}, 2.30 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ was added m-chloroperbenzoic acid (M-CPBA) ($483 \mathrm{mg}, 2.80 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 12 h . The reaction mixture was basified by addition of aq. NaHCO_{3} and the organic layer was separated, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residual solids were recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane to afford title compound 7a ($912 \mathrm{mg}, 87.3 \%$) as pale yellow prisms, m.p. $135-136^{\circ} \mathrm{C}$.

6-[(E)-1,2-Bis(methoxycarbonyl)vinyl]-5-methyl-6H-di-benzo[c,e][1,2]thiazin-5-ium Perchlorate 11.—Trifiuoroacetic anhydride ($2.2 \mathrm{~cm}^{3}$) was slowly added to a stirred solution of sulfoxide $7 \mathrm{a}(300 \mathrm{mg}, 0.80 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ at $-60^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at this temperature, and then for a further 10 h over which time the temperature was gradually raised to $0^{\circ} \mathrm{C}$. Silver perchlorate ($166 \mathrm{mg}, 0.80 \mathrm{mmol}$) was added to the reaction mixture, which was then stirred for 4 h . The precipitate was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Dry diethyl ether was added to the filtrate to precipitate crystals, which were collected and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether to afford the title thiazinium perchlorate $11(259 \mathrm{mg}$, 70.7%) as colourless prisms, m.p. $181-183^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }} / \mathrm{cm}^{-1} 1750$ and 1730 (ester) and $1090\left(\mathrm{ClO}_{4}{ }^{-}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ and $\left.\mathrm{CDCl}_{3}\right) 3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.75(6 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2 \times \mathrm{OMe}), 7.02(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}-)$ and $7.10-8.35(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ (Found: $\mathrm{C}, 49.8 ; \mathrm{H}, 3.9 ; \mathrm{N}, 2.9 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNO}_{8} \mathrm{~S}$ requires $\mathrm{C}, 50.1$; H, 4.0; N, 3.1\%).

Reaction of Compound 11 with Sodium Hydride.-Sodium hydride (60% dispersion in mineral oil; $40 \mathrm{mg}, 1 \mathrm{mmol}$) was added to a stirred suspension of perchlorate $11(450 \mathrm{mg}, 0.99$ mmol) in dry THF ($40 \mathrm{~cm}^{3}$) under an N_{2} atmosphere, and the mixture was stirred for 30 min at room temperature. The reaction mixture was poured into ice-water and extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated and subjected to PLC on silica gel with hexane-ethyl acetate (1:1) to give the compound 5 a ($228 \mathrm{mg}, 65 \%$).

Reactions of 9-Alkyl-9-thia-10-azaphenanthrenes 3a-c with Methyl Propiolate.-A solution of methyl propiolate (1.33 g , 15.8 mmol) in dry benzene ($5 \mathrm{~cm}^{3}$) was added to a solution of thiaazaphenanthrene $3 \mathrm{a}(1.12 \mathrm{~g}, 5.26 \mathrm{mmol}$) in dry benzene (45 cm^{3}), and the mixture was stirred continuously for 1 week at room temperature under nitrogen. Benzene was evaporated off under reduced pressure at room temperature to leave an oil which was subjected to PLC on silica gel with hexane-ethyl acetate (1:1) to afford 6,8-bis(methoxycarbonyl)-5-methyl-6 H dibenzo $[g, i][1,6]$ thiazecin-5-ium-6-ide 12a ($288 \mathrm{mg}, 14 \%$) as orange prisms after recrystallization from $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{2}$-hexane, m.p. $178-180^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }} / \mathrm{cm}^{-1} 1650$ (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$) 3.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $7.00-$ $7.95(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.80(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{CH})$ and $9.17(1 \mathrm{H}, \mathrm{d}, J$ $1.5, \mathrm{CH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 29.8$ (q), 51.2 (q), 51.8 (q), 86.2 (s), 103.2 (s) 115.2 (d), 125.1 (d), 129.6 (d), 130.0 (d), 131.4 (d), 131.9 (d), 132.0 (d), 133.4 (s), 137.1 (s), 138.0 (s), 142.8 (s), 147.8 (d), 153.4 (d), 167.4 (s) and 169.0 (s); $m / z 381$ (M^{+}) (Found: C, 66.0; H, 5.3; N, 3.4. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 66.1 ; \mathrm{H}, 5.0 ; \mathrm{N}, 3.7 \%$).

Under similar conditions to the above, the following di-benzothiazecin-5-ium-6-ide derivatives were obtained from the reaction of the thiaazaphenanthrenes 3 b and 3 c with methyl propiolate: 5 -ethyl-6,8-bis(methoxycarbonyl)- 6 H -dibenzo $[g, i][1,-$ 6]thiazecin-5-ium-6-ide 12b (from 3b; 4.89\%), orange prisms after PLC on silica gel with hexane-ethyl acetate (3:1), m.p. $168-170^{\circ} \mathrm{C}$ (decomp.) (from benzene-hexane); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1655 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.02\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 3.46-3.90$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $7.10-$ $7.75(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.82(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{CH})$ and $9.17(1 \mathrm{H}, \mathrm{d}, J$ 1.5, CH); m/z 395 (M ${ }^{+}$) and 262 (base) (Found: C, 66.6; H, 5.4; $\mathrm{N}, 3.5 . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 66.8; $\mathrm{H}, 5.35 ; \mathrm{N}, 3.5 \%$); 6,8-bis(methoxycarbonyl)-5-propyl-6 H -dibenzo $[g, i][1,6]$ thiaze-cin-5-ium-6-ide 12c (from 3c; 9.55\%) orange prisms after PLC on silica gel with hexane-ethyl acetate (2:1), m.p. $161-162^{\circ} \mathrm{C}$ (decomp.) (from benzene-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1690$ and 1670 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.80\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} \mathrm{6}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, 1.15-1.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $3.53-3.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 3.80$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.12-7.85 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.82 $(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{CH})$ and $9.18(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{CH}) ; m / z 409\left(\mathrm{M}^{+}\right)$ and 262 (base) (Found: C, 67.5; H, 5.75; N, 3.3. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 67.5 ; \mathrm{H}, 5.7 ; \mathrm{N}, 3.4 \%$).

Reaction of the 9-Alkyl-9-thia-10-azaphenanthrenes 3a-c with Diphenylcyclopropenone.-(a) In ethanol. A mixture of compound 3a ($300 \mathrm{mg}, 1.41 \mathrm{mmol}$) and diphenylcyclopropenone ($290 \mathrm{mg}, 1.41 \mathrm{mmol}$) in absolute ethanol $\left(20 \mathrm{~cm}^{3}\right.$) was stirred for 15 h after which time the solvent was removed under reduced pressure. The residual oil was submitted to PLC on silica gel with hexane-ethyl acetate (4:1) to give 2-[(Z)-2-(ethoxy-carbonyl)-1,2-diphenylvinylamino]-2'-methylsulfanylbiphenyl $13 \mathrm{a}(105 \mathrm{mg}, 16.0 \%$) as colourless prisms after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, m.p. $118-119{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3160(\mathrm{NH})$ and 1650 (ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 2.47$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), 4.03 ($2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{Me}$), 6.25-7.40 ($18 \mathrm{H}, \mathrm{m}$, ArH) and $10.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 465\left(\mathrm{M}^{+}\right)$and 392 (base) (Found: C, 77.1; H, 5.9; N, 3.0. $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 77.4$; H, 5.85; N, 3.0\%).

Under similar conditions to the above, the following compounds were obtained from the reaction of the thiaazaphenanthrenes 3b and \mathbf{c} with diphenylcyclopropenone: 2-[(E)-2-(ethoxycarbonyl)-1,2-diphenylvinylamino]-2'-ethylsulfanylbiphenyl 13b (20.5%) as colourless prisms after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, m.p. $100-101{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $3160(\mathrm{NH})$ and $1645\left(\right.$ ester); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.12(3 \mathrm{H}, \mathrm{t}, J 7$,
$\mathrm{SCH}_{2} \mathrm{Me}$), $1.37\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 2.98(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{SCH}_{2} \mathrm{Me}\right)$, $4.07\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 6.30-7.50(18 \mathrm{H}, \mathrm{m}$, ArH) and $10.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $m / z 479\left(\mathrm{M}^{+}\right)$and 406 (base) (Found: C, 77.4; H, 6.0; N, 2.9. $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 77.6$; H, 6.1; N, 2.9\%); 2-[(Z)-2-ethoxycarbonyl-1,2-diphenyl-vinylamino]-2'-propylsulfanylbiphenyl 13c (34.4%) as colourless prisms after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, m.p. $122-123{ }^{\circ} \mathrm{C} ; \nu_{\text {max }} / \mathrm{cm}^{-1} 3160(\mathrm{NH})$ and $1655($ ester $) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.03\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.13\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$, 1.45-1.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.94(2 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $4.07\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 6.84-7.48(18 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and $10.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 493\left(\mathrm{M}^{+}\right)$and 420 (base) (Found: C, 77.7; H, 6.4; N, 2.8. $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{~S}$ requires C , $77.9 ; \mathrm{H}, 6.3 ; \mathrm{N}, 2.8 \%$).
(b) In benzene. A mixture of compound $\mathbf{3 a}(300 \mathrm{mg}, 1.41 \mathrm{mmol})$ and diphenylcyclopropenone ($435 \mathrm{mg}, 2.11 \mathrm{mmol}$) in dry benzene ($30 \mathrm{~cm}^{3}$) was stirred for 17 h at room temperature. The reaction mixture was concentrated to dryness to give a crude oil, which was purified by PLCon silica gel with hexane-ethyl acetate (2:1) as solvent to afford 8-(2'-methylsulfanylphenyl)-2,3-diphenylquinolin-4-(1 H)-one $14 \mathrm{a}(37 \mathrm{mg}, 6.27 \%$) as colourless prisms after recrystallization from benzene-hexane, m.p. 184.5$185.5^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 3400(\mathrm{NH})$ and $1610(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.40(3$ $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.15-8.00(17 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and NH) and $8.52(1 \mathrm{H}, \mathrm{dd}, J 7$ and 3, $\mathrm{C}_{5}-\mathrm{H}$); $m / z 419\left(\mathrm{M}^{+}\right.$) and 418 (base) (Found: C, $80.05 ; \mathrm{H}$, $5.0 ; \mathrm{N}, 3.4 . \mathrm{C}_{28} \mathrm{H}_{21}$ NOS requires $\mathrm{C}, 80.2 ; \mathrm{H}, 5.05 ; \mathrm{N}, 3.3 \%$).

Under similar conditions to the above, the following dihydroquinolinone derivatives were obtained from the reaction of the thiaazaphenanthrenes $\mathbf{3 b}$ and 3 c with diphenylcyclopropenone, respectively: 8-(2'-ethylsulfanylphenyl)-2,3-diphen-ylquinolin- $4(1 H)$-one $14 \mathrm{~b}(91 \mathrm{mg}, 15.9 \%$) as colourless prisms after PLC on silica gel with hexane-ethyl acetate (2:1), m.p. 59$62{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 3400(\mathrm{NH})$ and 1615 $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.24\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 2.86(2 \mathrm{H}, \mathrm{q}, J$ 7.5, $\mathrm{CH}_{2} \mathrm{Me}$), 7.22-7.90 ($17 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and NH) and $8.56(1 \mathrm{H}$, dd, $J 6$ and $3, \mathrm{C}_{5}-\mathrm{H}$); $m / z 433$ (M^{+}) and 432 (base) (Found: 80.2; $\mathrm{H}, 5.9 ; \mathrm{N}, 2.9 . \mathrm{C}_{29} \mathrm{H}_{23}$ NOS requires $\mathrm{C}, 80.3 ; \mathrm{H}, 5.35 ; \mathrm{N}, 3.2 \%$); 2,3-diphenyl-8-(2'-propylsulfanylphenyl)quinolin-4(1 H)-one 14 c ($56 \mathrm{mg}, 7.55 \%$) as colourless prisms after PLC on silica gel with hexane-ethyl acetate ($1: 1$), m.p. $154-155^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $v_{\max } / \mathrm{cm}^{-1} 3400(\mathrm{NH})$ and $1610(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.93\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.20-1.92(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 1.81 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $7.10-7.90(17 \mathrm{H}$, m, ArH and NH) and $8.57\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.3, \mathrm{C}_{5}-\mathrm{H}\right) ; m / z 447$ (M^{+}) and 446 (base) (Found: $\mathrm{C}, 80.2 ; \mathrm{H}, 5.7 ; \mathrm{N}, 3.1 . \mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NOS}$ requires $\mathrm{C}, 80.5 ; \mathrm{H}, 5.6 ; \mathrm{N}, 3.1 \%$).

Thermal Cyclization of Compound 13.-A mixture of compound 13a (170 mg) and Dowtherm ($20 \mathrm{~cm}^{3}$) was heated for 1 h at $250^{\circ} \mathrm{C}$. The reaction mixture was column chromatographed on silica gel with hexane-ethyl acetate (1:1) to remove the Dowtherm, and further purified by PLC on silica gel with hexane-ethyl acetate (1:1) to afford the dihydroquinolinone 14 a ($90 \mathrm{mg}, 58.8 \%$). Similarly, compounds 13b and 13 c were heated in Dowtherm at $250^{\circ} \mathrm{C}$ for 1 h to give the corresponding dihydroquinolinones 14 b (77.9%) and 14 c (57.7%), respectively.

X-Ray Study of 6,7-Bis(methoxycarbonyl)-5-phenyl-6H-dibenzo $[\mathrm{e}, \mathrm{g}][1,4]$ thiazocin-5-ium-6-ide 6f.-Crystal data. $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}, \quad M=417.48$. Monoclinic, $a=14.864(6), b=$ $9.137(6), c=15.469(6) \AA, \beta=102.41(3) \AA, V=2052(2) \AA^{3}$, $Z=4, D_{\mathrm{c}}=1.351 \mathrm{~g} \mathrm{~cm}^{-3}$, space group $P 2_{1} / c$ (\#14) from systematic absences, $F(000)=872$, Mo-K α radiation, $\lambda=$ $0.71069 \AA(\mathrm{Mo}-\mathrm{K} \alpha)=1.79 \mathrm{~cm}^{-1}$.
A yellow plate crystal of the title compound having approximate dimensions of $0.150 \times 0.080 \times 0.150 \mathrm{~mm}$ was mounted in a glass capillary. All measurements were made on a

Rigaku AFC5R diffractometer with graphite monochromated Mo-K α radiation and a 12 kW rotating anode generator.

Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using the setting angles of 19 carefully centred reflections in the range $6.89<2 \theta<12.21^{\circ}$ corresponded to a monoclinic cell. The data were collected at a temperature of $23 \pm 1^{\circ} \mathrm{C}$ using the $\omega-2 \theta$ scan technique to a maximum 2θ value of 55.0°. Omega scans of several intense reflections, made prior to data collection, had an average width at half-height of 0.32°, with a take-off angle of 6.0°. Scans of $(0.89+0.30 \tan \theta)^{\circ}$ were made at a speed of $16.0^{\circ} \mathrm{min}^{-1}$ (in omega). The weak reflections $[I<10.0 \sigma(I)]$ were rescanned (maximum of 2 rescans) and the counts were accumulated to assure good counting statistics. Stationary background counts were recorded on each side of the reflection. The ratio of peak counting time to background counting time was $2: 1$. The diameter of the incident beam collimator was 0.5 mm and the crystal to detector distance was 25.8 cm .

Data reduction. Of the 5197 reflections which were collected, 5012 were unique ($R_{\text {int }}=0.125$). The intensities of three representative reflections, which were measured after every 150 reflections, remained constant throughout data collection indicating crystal and electronic stability (no decay correction was applied). The linear absorption coefficient for $\mathrm{Mo}-\mathrm{K} \alpha$ is $1.8 \mathrm{~cm}^{-1}$. Azimuthal scans of several reflections indicated no need for an absorption correction. The data were corrected for Lorentz and polarization effects.

Structure solution and refinement. The structure was solved by direct methods. ${ }^{7}$ The non-hydrogen atoms were refined anisotropically. The final cycle of full-matrix least-squares refinement was based on 975 observed reflections [$I<3.00$ $\sigma(I)]$ and 328 variable parameters, and converged (largest parameter shift was 0.36 times its e.s.d.) with unweighted and weighted agreement factors of: $R=\Sigma\left|F_{\mathrm{o}}\right|-F_{\mathrm{c}} \| / \Sigma\left|F_{\mathrm{o}}\right|=$ $0.050 . R_{\mathrm{w}}=\left[\left(\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w F_{\mathrm{o}}^{2}\right)\right]^{\frac{1}{2}}=0.047$. The standard deviation of an observation of unit weight was 1.28 . The weighting scheme was based on counting statistics and included a factor ($p=0.03$) to downweight the intense reflections. Plots of $\Sigma w\left(\left|F_{0}\right|-\mid F_{\mathrm{c}}\right)^{2}$ versus $\left|F_{\mathrm{o}}\right|$, reflection order in data collection, $\sin \theta / \lambda$, and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.23 and -0.27 e \AA^{-3}, respectively. Neutral atom scattering factors were taken from Cromer and Waber. ${ }^{8}$ Anomalous dispersion effects were included in $\mathrm{F}_{\text {cala }}$; ${ }^{9}$ the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Cromer. ${ }^{10}$ All calculations were performed using the TEXSAN ${ }^{11}$ crystallographic software package of Molecular Structure Corporation.

Supplementary data. Lists of atomic coordinates and thermal parameters, and bond distances and angles have been deposited at the Cambridge Crystallographic Data Centre.*

* For details of the CCDC deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. I, 1994, issue 1.

References

1 (a) M. Hori, T. Kataoka, H. Shimizu and K. Matsuo, Tetrahedron Lett., 1979, 3969; (b) H. Shimizu, K. Matsuo, T. Kataoka and M. Hori, Chem. Pharm. Bull., 1984, 32, 4360.

2 (a) C. J. Moody, C. W. Rees, S. C. Tsoi and D. J. Williams, J. Chem. Soc., Chem. Commun., 1981, 927 ; (b) R. S. Gairns, R. D. Grant, C. J. Moody, C. W. Rees and S. C. Tsoi, J. Chem. Soc., Perkin Trans. 1, 1986, 483.
3 (a) R. D. Grant, C. J. Moody, C. W. Rees and S. C. Tsoi, J. Chem. Soc., Chem. Commun., 1982, 884; (b) R. S. Gairns, R. D. Grant, C. J. Moody, C. W. Rees and S. C. Tsoi, J. Chem. Soc., Perkin Trans. I, 1986, 491; (c) R. D. Grant, C. W. Rees and D. J. Williams, J. Chem. Soc., Chem. Commun., 1982, 1060.
4 (a) H. Shimizu, K. Ikedo, K. Hamada, H. Matsumoto, M. Ozawa, T. Kataoka and M. Hori, Tetrahedron Lett., 1990, 31, 7021; (b) H. Shimizu, K. Hamada, M. Ozawa, T. Kataoka, M. Hori, K. Kobayashi and Y. Tada, Tetrahedron Lett., 1991, 32, 4359; (c) H. Shimizu, K. Ikedo, K. Hamada, M. Ozawa, H. Matsumoto, K. Kamata, H. Nakamura, M. Ji, T. Kataoka and M. Hori, J. Chem. Soc., Perkin Trans. I, 1991, 1733.

5 M. Hori, T. Kataoka, H. Shimizu, K. Matsuo, A. Sugimoto, K. Ikedo, K. Hamada, H. Ogura and H. Takayanagi, J. Chem. Soc., Chem. Commun., 1987, 385.
6 G. A. Reynolds and C. R. Hauser, Org. Synth., 1955, coll. vol. 3, p. 593.

7 Structure solutions methods: PHASE (Patterson heavy atom solution extractor), J. C. Calbrese, Univ. of Wisconsin-Madison, Ph.D. Thesis, 1972; DIRDIF (direct methods for difference structures-an automatic procedure for phase extension and refinement of difference structure factors), P. T. Beurskens, Technical Report 1984/1, Crystallography Laboratory, Toernooiveld, 6525 Ed. Nijmegen, Netherlands.
8 D. T. Cromer and J. T. Waber, Table 2.2A in International Tables for X-ray Crystallography, vol. iv, Kynoch Press, Birmingham, UK, 1974.

9 J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 1964, 17, 781.
10 D. T. Cromer and J. T. Waber, Table 2.3.1 in International Tables for X-ray Crystallography, vol. Iv, Kynoch Press, Birmingham, UK, 1974.

11 TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation, 1985.

Paper 4/01108B
Received 23rd February 1994
Accepted 9th March 1994

